PRICING LIFE INSURANCE CONTRACTS WITH EARLY EXERCISE FEATURES

Anna Rita Bacinello
Department of Applied Mathematics ‘B. de Finetti’ - University of Trieste

Enrico Biffis
Faculty of Actuarial Science and Statistics, Cass Business School, London

Pietro Millossovich
Department of Applied Mathematics ‘B. de Finetti’ - University of Trieste

IME – Athens – 2007
Options in life insurance

Options embedded in life insurance contracts:

- European style with possibly random maturity ⇒ Titanic option [Milevsky and Posner - JRI(01)] (minimum guarantees, bonus options, conversion options, . . .);
Options in life insurance

Options embedded in life insurance contracts:

- **European style with possibly random maturity** ⇒ Titanic option [Milevsky and Posner - JRI(01)] (minimum guarantees, bonus options, conversion options, . . .);

- **American style**: the policyholder has the right to make some well-specified actions before the natural termination of the contract ⇒ early termination feature.
Options in life insurance

Options embedded in life insurance contracts:

- European style with possibly random maturity ⇒ Titanic option [Milevsky and Posner - JRI(01)] (minimum guarantees, bonus options, conversion options, . . .);

- **American style**: the policyholder has the right to make some well-specified actions before the natural termination of the contract ⇒ early termination feature.

Most common American option is the **surrender option**: the policyholder has the right to early terminate the contract and receive a cash amount, called **surrender value**
Options in life insurance

Options embedded in life insurance contracts:

- European style with possibly random maturity ⇒ Titanic option [Milevsky and Posner - JRI(01)] (minimum guarantees, bonus options, conversion options, ...);

- **American style**: the policyholder has the right to make some well-specified actions before the natural termination of the contract ⇒ early termination feature.

Most common American option is the **surrender option**: the policyholder has the right to early terminate the contract and receive a cash amount, called **surrender value** ⇒ (non-standard) American put option on the residual contract with the surrender value as exercise price.
Options in life insurance

Options embedded in life insurance contracts:

- European style with possibly random maturity ⇒ Titanic option [Milevsky and Posner - JRI(01)] (minimum guarantees, bonus options, conversion options, ...);

- American style: the policyholder has the right to make some well-specified actions before the natural termination of the contract ⇒ early termination feature.

Most common American option is the surrender option: the policyholder has the right to early terminate the contract and receive a cash amount, called surrender value ⇒ (non-standard) American put option on the residual contract with the surrender value as exercise price.

If mortality risk can be diversified away (by pooling), then a Titanic option can be reduced to a portfolio of European options with different maturities; this does not apply to American options ⇒ valuation problem.
Approaches to valuation

- **Binomial Trees (and Extensions):** e.g. [Grosen and Jorgensen - IME(00)], [Bacinello - JRI(03), NAAJ(03), IME(05)];
Approaches to valuation

- **BINOMIAL TREES (AND EXTENSIONS):** e.g. [Grosen and Jorgensen - IME(00)], [Bacinello - JRI(03), NAAJ(03), IME(05)];

- **FINITE DIFFERENCE METHODS:** e.g. [Jensen et al. - GPRIT(01)], [Tanskanen and Lukkarinen - IME(03)], [Shen and Xu - IME(05)];
Approaches to valuation

- **BINOMIAL TREES (AND EXTENSIONS):** e.g. [Grosen and Jorgensen - IME(00)], [Bacinello - JRI(03), NAAJ(03), IME(05)];

- **FINITE DIFFERENCE METHODS:** e.g. [Jensen et al. - GPRIT(01)], [Tanskanen and Lukkarinen - IME(03)], [Shen and Xu - IME(05)];

- **MONTE CARLO SIMULATION:** e.g. [Andreatta and Corradin wp(03)], [Baione et al. IMFI(06)]
Approaches to valuation

- **Binomial Trees (and Extensions):** e.g. [Groesen and Jorgensen - IME(00)], [Bacinello - JRI(03), NAAJ(03), IME(05)];

- **Finite Difference Methods:** e.g. [Jensen et al. - GPRIT(01)], [Tanskanen and Lukkarinen - IME(03)], [Shen and Xu - IME(05)];

- **Monte Carlo Simulation:** e.g. [Andreatta and Corradin wp(03)], [Baione et al. IMFI(06)]

Complexity of the problem involved ⇒ oversimplified assumptions:

- no (or not realistic) mortality risk modelling;
Approaches to valuation

- **Binomial Trees (and Extensions):** e.g. [Grosen and Jorgensen - IME(00)], [Bacinello - JRI(03), NAAJ(03), IME(05)];

- **Finite Difference Methods:** e.g. [Jensen et al. - GPRIT(01)], [Tanskanen and Lukkarinen - IME(03)], [Shen and Xu - IME(05)];

- **Monte Carlo Simulation:** e.g. [Andreatta and Corradin wp(03)], [Baione et al. IMFI(06)]

Complexity of the problem involved ⇒ oversimplified assumptions:

- no (or not realistic) mortality risk modelling;

- Restrictive hypotheses on processes of concern (constant interest rates, GBM, ...).
Approaches to valuation

- **Binomial Trees (and Extensions):** e.g. [Grosen and Jorgensen - IME(00)], [Bacinello - JRI(03), NAAJ(03), IME(05)];

- **Finite Difference Methods:** e.g. [Jensen et al. - GPRIT(01)], [Tanskanen and Lukkarinen - IME(03)], [Shen and Xu - IME(05)];

- **Monte Carlo Simulation:** e.g. [Andreatta and Corradin wp(03)], [Baione et al. IMFI(06)]

Complexity of the problem involved ⇒ oversimplified assumptions:

- no (or not realistic) mortality risk modelling;

- Restrictive hypotheses on processes of concern (constant interest rates, GBM, ...).

Monte Carlo simulation combined with LS regression (**LSM**, [Carrière - IME(96)], [Longstaff and Schwarz - RFS(01)]) allows to overcome such drawbacks.
We exploit the flexibility of LSM to show how a general life insurance contract embedding a surrender option can be valued even under realistic assumptions.
We exploit the flexibility of LSM to show how a general life insurance contract embedding a surrender option can be valued even under realistic assumptions.

Mortality enters the LSM algorithm as any other variable;
We exploit the flexibility of LSM to show how a general life insurance contract embedding a surrender option can be valued even under realistic assumptions.

Mortality enters the LSM algorithm as any other variable;

- surrender only in case of survival;
- underlying variable depends on mortality.
Target

- We exploit the flexibility of LSM to show how a general life insurance contract embedding a surrender option can be valued even under realistic assumptions.

- **Mortality** enters the LSM algorithm as any other variable;
 - surrender only in case of survival;
 - underlying variable depends on mortality.

- Aim at **fair valuation** in a frictionless and arbitrage-free market ⇒ consistent with IASB proposal;
Target

- We exploit the flexibility of LSM to show how a general life insurance contract embedding a surrender option can be valued even under realistic assumptions.

- **Mortality** enters the LSM algorithm as any other variable;
 - surrender only in case of survival;
 - underlying variable depends on mortality.

- Aim at *fair valuation* in a frictionless and arbitrage-free market ⇒ consistent with IASB proposal;

- market incompleteness ⇒ choice of a pricing measure;
We exploit the flexibility of LSM to show how a general life insurance contract embedding a surrender option can be valued even under realistic assumptions.

- **Mortality** enters the LSM algorithm as any other variable;
 - surrender only in case of survival;
 - underlying variable depends on mortality.

- Aim at **fair valuation** in a frictionless and arbitrage-free market ⇒ consistent with IASB proposal;

- market incompleteness ⇒ choice of a pricing measure;

- choice of pricing measure ⇒ price of early termination option;
Target

- We exploit the flexibility of LSM to show how a general life insurance contract embedding a surrender option can be valued even under realistic assumptions.

- **Mortality** enters the LSM algorithm as any other variable;
 - surrender only in case of survival;
 - underlying variable depends on mortality.

- Aim at **fair valuation** in a frictionless and arbitrage-free market ⇒ consistent with IASB proposal;

- market incompleteness ⇒ choice of a pricing measure;

- choice of pricing measure ⇒ price of early termination option;

- numerical example:
 - unit-linked endowment insurance with **terminal** or **cliquet** guarantees;
 - interest rates: CIR reference portfolio: GBM+SV+J mortality: time dependent coefficients square root+J.
Valuation framework

- Given is a filtered probability space $(\Omega, \mathcal{F}, \mathcal{G}, P)$.
Valuation framework

- Given is a filtered probability space \((\Omega, \mathcal{F}, \mathcal{G}, P)\).
- Policyholder time of death (or residual lifetime) \(\tau\) is a \(\mathcal{G}\)-stopping time (s.t.).
Valuation framework

- Given is a filtered probability space \((\Omega, \mathcal{F}, \mathcal{G}, P)\).
- Policyholder time of death (or residual lifetime) \(\tau\) is a \(\mathcal{G}\)-stopping time (s.t.).
- Insurance contract (without surrender):
 - cumulated death benefit: \(D^d_t = B^d_\tau 1_{\{\tau \leq t\}}\).
Valuation framework

■ Given is a filtered probability space \((\Omega, \mathcal{F}, \mathcal{G}, P)\).

■ Policyholder time of death (or residual lifetime) \(\tau\) is a \(\mathcal{G}\)-stopping time (s.t.).

■ Insurance contract (without surrender):

 ◆ cumulated death benefit: \(D^d_t = B^d_\tau 1_{\{\tau \leq t\}}\);

 ◆ cumulated survival benefit: \(D^s_t = \int_0^t 1_{\{\tau > u\}} \, dB^s_u\);
Valuation framework

■ Given is a filtered probability space \((\Omega, \mathcal{F}, \mathcal{G}, P)\).

■ Policyholder time of death (or residual lifetime) \(\tau\) is a \(\mathcal{G}\)-stopping time (s.t.).

■ Insurance contract (without surrender):

- cumulated death benefit: \(D^d_t = B^d_\tau 1\{\tau \leq t\}\);
- cumulated survival benefit: \(D^s_t = \int_0^t 1\{\tau > u\} \, dB^s_u\);
- total cumulated benefit: \(D_t = D^d_t + D^s_t\).

Most common contracts are included in the above set-up.
Valuation framework

- Given is a filtered probability space \((\Omega, \mathcal{F}, \mathcal{G}, P)\).

- Policyholder time of death (or residual lifetime) \(\tau\) is a \(\mathcal{G}\)-stopping time (s.t.).

- Insurance contract (without surrender):
 - cumulated death benefit: \(D^d_t = B^d_\tau 1\{\tau \leq t\}\);
 - cumulated survival benefit: \(D^s_t = \int_0^t 1\{\tau > u\} dB^s_u\);
 - total cumulated benefit: \(D_t = D^d_t + D^s_t\).

Most common contracts are included in the above set-up.

- Insurance contract with surrender; for any exercise policy \(\theta\) (\(\mathcal{G}\)-s.t.):
 - cumulated surrender benefit: \(D^r_t(\theta) = B^r_\theta 1\{\theta \leq t, \theta < \tau\}\);
Valuation framework

- Given is a filtered probability space \((\Omega, \mathcal{F}, \mathcal{G}, P)\).

- Policyholder time of death (or residual lifetime) \(\tau\) is a \(\mathcal{G}\)-stopping time (s.t.).

- Insurance contract (without surrender):
 - cumulated death benefit: \(D^d_t = B^d_\tau 1\{\tau \leq t\}\);
 - cumulated survival benefit: \(D^s_t = \int_0^t 1\{\tau > u\} dB^s_u\);
 - total cumulated benefit: \(D_t = D^d_t + D^s_t\).

 Most common contracts are included in the above set-up.

- Insurance contract with surrender; for any exercise policy \(\theta\) (\(\mathcal{G}\)-s.t.):
 - cumulated surrender benefit: \(D^r_t(\theta) = B^r_\theta 1\{\theta \leq t, \theta < \tau\}\);
 - total cumulated benefit: \(D_{t\wedge \theta} + D^r_t(\theta)\)
... Valuation Framework

- Fix a risk neutral probability $Q \sim P$ under which discounted (at the risk-free rate) cumulated gain for any security is a Q-martingale.
Valuation Framework

- Fix a risk neutral probability \(Q (\sim P) \) under which discounted (at the risk-free rate) cumulated gain for any security is a \(Q \)-martingale.

- Very convenient if (see [Biffis - IME(05)])
 - \(\mathcal{G} = \mathcal{F} \vee \mathcal{H} \) where \(\mathcal{H} \) is generated by \(\tau \);
Fix a risk neutral probability $Q \sim P$ under which discounted (at the risk-free rate) cumulated gain for any security is a Q-martingale.

Very convenient if (see [Biffis - IME(05)])

- $G = F \lor H$ where H is generated by τ;
- τ is G-Cox with F-predictable force of mortality (μ_t) (\Rightarrow easy to simulate);
... Valuation Framework

- Fix a risk neutral probability $Q \sim P$ under which discounted (at the risk-free rate) cumulated gain for any security is a Q-martingale.

- Very convenient if (see [Biffis - IME(05)])
 - $G = F \lor H$ where H is generated by τ;
 - τ is G-Cox with F-predictable force of mortality (μ_t) (\Rightarrow easy to simulate);
 - any other process of interest is F-adapted (or predictable).
... Valuation Framework

- Fix a risk neutral probability $Q \sim P$ under which discounted (at the risk-free rate) cumulated gain for any security is a Q-martingale.

- Very convenient if (see [Biffis - IME(05)])
 - $\mathcal{G} = \mathcal{F} \vee \mathcal{H}$ where \mathcal{H} is generated by τ;
 - τ is \mathcal{G}-Cox with \mathbb{F}-predictable force of mortality (μ_t) (\Rightarrow easy to simulate);
 - any other process of interest is \mathbb{F}-adapted (or predictable).

- Value of the contract with surrender option (for fixed θ): $V^r_0(\theta)$; the value of the contract is given by the optimal stopping problem

$$V^{r*}_0 = \sup_{\theta \in \mathcal{T}} V^r_0(\theta)$$

where $\mathcal{T} = \text{set of } \mathcal{G}$-stopping times.
... Valuation Framework

- Fix a risk neutral probability $Q \sim P$ under which discounted (at the risk-free rate) cumulated gain for any security is a Q-martingale.

- Very convenient if (see [Biffis - IME(05)])

 - $\mathcal{G} = \mathcal{F} \vee \mathcal{H}$ where \mathcal{H} is generated by τ;

 - τ is \mathcal{G}-Cox with \mathcal{F}-predictable force of mortality (μ_t) (\Rightarrow easy to simulate);

 - any other process of interest is \mathcal{F}-adapted (or predictable).

- Value of the contract with surrender option (for fixed θ): $V_0^r(\theta)$; the value of the contract is given by the optimal stopping problem

$$V_0^{r*} = \sup_{\theta \in T} V_0^r(\theta)$$

where $T = \text{set of } \mathcal{G}\text{-stopping times}$.

- one can replace \mathcal{G}-s.t. with \mathcal{F}-s.t. or s.t. bounded by τ.
LSM algorithm

Unbundling of the contract:

\[V_{0r}^* = V_0 + W_0^* \]

where \(V_0 \) = value of the contract without surrender and \(W_0^* \) = value of the surrender option (right to receive \(B^r \) and give up \(V \)).
LSM algorithm

Unbundling of the contract:

\[V_{0}^{*} = V_{0} + W_{0}^{*} \]

where \(V_{0} \) = value of the contract without surrender and \(W_{0}^{*} \) = value of the surrender option (right to receive \(B^{r} \) and give up \(V \)).

In order to compute \(V_{0}^{*} \) with backward dynamic programming, the LSM requires

- **discretization** in the time dimension;
LSM algorithm

Unbundling of the contract:

\[V_0^{r*} = V_0 + W_0^* \]

where \(V_0 \) = value of the contract without surrender and \(W_0^* \) = value of the surrender option (right to receive \(B^r \) and give up \(V \)).

In order to compute \(V_0^* \) with backward dynamic programming, the LSM requires

- **discretization** in the time dimension;
- **simulation** of all random processes;
LSM algorithm

Un Bundling of the contract:

\[V_{0}^{r^*} = V_{0} + W_{0}^{*} \]

where \(V_{0} \) = value of the contract without surrender and \(W_{0}^{*} \) = value of the surrender option (right to receive \(B^r \) and give up \(V \)).

In order to compute \(V_{0}^{*} \) with backward dynamic programming, the LSM requires

- **discretization** in the time dimension;
- **simulation** of all random processes;
- Approximation of the **continuation value** by regression against function of **state variables**
 \(\Rightarrow \) choice of **basis functions**;
LSM algorithm

Unbundling of the contract:

\[V_{0*} = V_0 + W_{0*} \]

where \(V_0 \) = value of the contract without surrender and \(W_{0*} \) = value of the surrender option (right to receive \(B^r \) and give up \(V \)).

In order to compute \(V_{0*} \) with backward dynamic programming, the LSM requires

- discretization in the time dimension;
- simulation of all random processes;
- Approximation of the continuation value by regression against function of state variables ⇒ choice of basis functions;

Convergence of the whole scheme is guaranteed if state variables are Markov, see [Clément et al. - FS(02)].
\[V_0^r (\theta) = E^Q \left[\int_0^\theta \frac{d(D_u + D_u^r(\theta))}{S_u^0} \right], \]

where \(S^0 \) is the money market account.
Method I: apply the algorithm directly to evaluate

$$V_{0}^{r}(\theta) = E^{Q}\left[\int_{0}^{\theta} \frac{d(D_{u} + D_{u}^{r}(\theta))}{S_{u}^{0}} \right],$$

where S^{0} is the money market account.

- need to simulate **times of death**; the backward algorithm starts from these times.
- At any time, only trajectories in which the insured is still alive enter the approximation.
\[V_0^r(\theta) = \mathbb{E}^Q \left[\int_0^\theta \frac{d(D_u + D_u^r(\theta))}{S_u^0} \right], \]

where \(S_0^0 \) is the money market account.

- need to simulate \textbf{times of death}; the backward algorithm starts from these times.
- At any time, only trajectories in which the insured is still alive enter the approximation.

Method II: exploit the Cox setting \(\Rightarrow \) replace indicators with probabilities, i.e. discount sums at risk-adjusted rate \(r + \mu \):
Method I: apply the algorithm directly to evaluate

\[V_0^r (\theta) = E^Q \left[\int_0^\theta \frac{d(D_u + D_u^r(\theta))}{S_u^0} \right], \]

where \(S^0 \) is the money market account.

- need to simulate times of death; the backward algorithm starts from these times.
- At any time, only trajectories in which the insured is still alive enter the approximation.

Method II: exploit the Cox setting ⇒ replace indicators with probabilities, i.e. discount sums at risk-adjusted rate \(r + \mu \):

\[V_0^r (\theta) = E^Q \left[\int_0^\theta \frac{d(\hat{D}_u + \hat{D}_u^r)}{\hat{S}_u^0} \right], \]

where \(d\hat{D}_u = dB_u^s + B_u^d \mu_u du \) and \(\hat{D}^r = B^r \) and \(\hat{S}^0 \) is the adjusted money-market account ⇒ contract without mortality.
Numerical examples

- Focus on single premium unit-linked endowment insurance with maturity $T > 0$, individual aged x at time 0.
Numerical examples

- Focus on single premium unit-linked endowment insurance with maturity $T > 0$, individual aged x at time 0.

- Price process of reference portfolio is (S_t).
Numerical examples

- Focus on single premium unit-linked endowment insurance with maturity $T > 0$, individual aged x at time 0.

- Price process of reference portfolio is (S_t).

- (Cumulated) benefits:

$$B_t^s = F_T^g 1_{t \geq T} \quad B_t^d = F_t^g 1_{t < T} \quad B_t^r = F_t^h 1_{t < T},$$

with either Terminal or Cliquet guarantee:
Numerical examples

- Focus on **single premium** unit-linked endowment insurance with maturity $T > 0$, individual aged x at time 0.

- Price process of reference portfolio is (S_t).

- (Cumulated) benefits:

 \[
 B^s_t = F^g_T 1_{t \geq T} \quad B^d_t = F^g_t 1_{t < T} \quad B^r_t = F^h_t 1_{t < T},
 \]

 with either **Terminal** or **Cliquet** guarantee:

- **Terminal guarantee**:

 \[
 F^l_t = \max\{S_t, S_0 e^{lt}\}, \quad l = g, h.
 \]
Numerical examples

- Focus on single premium unit-linked endowment insurance with maturity $T > 0$, individual aged x at time 0.

- Price process of reference portfolio is (S_t).

- (Cumulated) benefits:

 \[
 B^s_t = F^g_T 1_{t \geq T} \quad B^d_t = F^g_t 1_{t < T} \quad B^r_t = F^h_t 1_{t < T},
 \]

 with either Terminal or Cliquet guarantee:

- **Terminal guarantee:**

 \[
 F^l_t = \max\{S_t, S_0 e^{lt}\}, \quad l = g, h.
 \]

- **Cliquet guarantee:**

 \[
 F_t = F^l_t = S_0 \prod_{u=1}^{\lfloor t \rfloor} \max \left\{ \eta \left(\frac{S_u}{S_{u-1}} - 1 \right) + 1, e^g \right\}, \quad l = g, h
 \]
...Numerical examples

Financial and demographic uncertainty are independent and described by:

- Interest rates (CIR): \(dr_t = k_r (\theta_r - r_t)dt + \sigma_r \sqrt{r_t} dW_t^r. \)
Financial and demographic uncertainty are independent and described by:

- Interest rates (CIR): \(dr_t = k_r (\theta_r - r_t) dt + \sigma_r \sqrt{r_t} dW^r_t \).

- Reference portfolio ([Bakshi et al. - JoF(97)]): \(S = e^Y \), with

\[
\begin{align*}
 dY_t &= \left(r_t - \frac{1}{2} Z_t - \lambda_J \mu_J \right) dt + \sqrt{Z_t} \left(\rho_{SZ} dW^Z_t + \rho_{Sr} dW^r_t \\
 & \quad + \sqrt{1 - \rho_{SZ}^2 - \rho_{Sr}^2} dW^S_t \right) + dJ_t \\
 dZ_t &= k_Z (\theta_Z - Z_t) dt + \sigma_Z \sqrt{Z_t} dW^Z_t
\end{align*}
\]

where \(W = (W^r, W^Z, W^S) \) is a standard B.m. in \(\mathbb{R}^3 \) independent of the compound Poisson \(J \) (arrival intensity \(\lambda_J \), lognormal(\(\mu_J, \sigma_J \)) jumps).
Financial and demographic uncertainty are independent and described by:

- **Interest rates (CIR):** \(d r_t = k_r (\theta_r - r_t) dt + \sigma_r \sqrt{r_t} dW^r_t \).

- **Reference portfolio ([Bakshi et al. - JoF(97)]):** \(S = e^Y \), with

\[
\begin{align*}
 dY_t & = \left(r_t - \frac{1}{2} Z_t - \lambda_J \mu_J \right) dt + \sqrt{Z_t} \left(\rho_{SZ} dW^Z_t + \rho_{Sr} dW^r_t \right) \\
 & \quad + \sqrt{1 - \rho_{SZ}^2 - \rho_{Sr}^2} dW^S_t \right) + dJ_t \\
 dZ_t & = k_Z (\theta_Z - Z_t) dt + \sigma_Z \sqrt{Z_t} dW^Z_t
\end{align*}
\]

where \(W = (W^r, W^Z, W^S) \) is a standard B.m. in \(\mathbb{R}^3 \) independent of the compound Poisson \(J \) (arrival intensity \(\lambda_J \), lognormal(\(\mu_J, \sigma_J \)) jumps).

- **Stochastic mortality:** left continuous version of

\[
\begin{align*}
 d\mu_t & = k_\mu (m(t) - \mu_t) dt + \sigma_\mu \sqrt{\mu_t} dW^\mu_t + dK_t
\end{align*}
\]

where \(m \) is a deterministic force of mortality, \(W^\mu \) is a standard B.m. independent of the compound Poisson \(K \) (arrival intensity \(\lambda_K \) and \(\exp(\gamma_K) \) jumps).
...Numerical examples

- $T = 15$, $x = 40$;

- N. of simulations = 10000; forward discretization step = 1500, backward discretization step = 30.
Numerical examples

- $T = 15, x = 40$;

- N. of simulations = 10000; forward discretization step = 1500, backward discretization step = 30.

- Financial model:
 - $r_0 = 0.05, \ k_r = 0.6, \ \theta_r = 0.05, \ \sigma_r = 0.03$;
 - $Z_0 = 0.04, \ k_Z = 1.5, \ \theta_Z = 0.04, \ \sigma_Z = 0.4$;
 - $S_0 = 100, \ \rho_{ZS} = -0.7, \ \rho_{rS} = 0, \ \lambda_J = 0.5, \ \mu_J = 0, \ \sigma_J = 0.07$.
...Numerical examples

- $T = 15, x = 40$;

- N. of simulations $= 10000$; forward discretization step $= 1500$, backward discretization step $= 30$.

- Financial model:

 - $r_0 = 0.05$, $k_r = 0.6$, $\theta_r = 0.05$, $\sigma_r = 0.03$;
 - $Z_0 = 0.04$, $k_Z = 1.5$, $\theta_Z = 0.04$, $\sigma_Z = 0.4$;
 - $S_0 = 100$, $\rho_{ZS} = -0.7$, $\rho_{rS} = 0$, $\lambda_J = 0.5$, $\mu_J = 0$, $\sigma_J = 0.07$.

- Demographic model: m Weibull fitted against a SIM2001;
 $k_{\mu} = 0.5$, $\sigma_{\mu} = 0.03$, $\lambda_{\mu} = 0.1$, $\gamma_{\mu} = 100$.

- State variables: μ, r, S, Z (+ F for the cliquet guarantee). Basis functions: polynomials in 4 (5) variables of grade 4.
Table 1: Surrender option premiums W_0^* for different values of the minimum interest rate terminal guarantee at death or maturity (g) and at surrender (h).

<table>
<thead>
<tr>
<th>h</th>
<th>V_0</th>
<th>g 0.00</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>107.07</td>
<td>8.25</td>
<td>6.37</td>
<td>4.16</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>0.01</td>
<td>109.41</td>
<td>8.02</td>
<td>5.09</td>
<td>2.70</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td></td>
<td>6.93</td>
<td>3.49</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td></td>
<td></td>
<td>5.23</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td>2.88</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Surrender option premiums $W_0^* (V_0)$ for different values of the cliquet guarantees (g) and (η).

<table>
<thead>
<tr>
<th>η</th>
<th>$g = 0.00$</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>32.23</td>
<td>28.25</td>
<td>22.87</td>
<td>15.99</td>
<td>7.20</td>
</tr>
<tr>
<td></td>
<td>(65.82)</td>
<td>(69.86)</td>
<td>(75.37)</td>
<td>(82.73)</td>
<td>(92.29)</td>
</tr>
<tr>
<td>0.4</td>
<td>9.72</td>
<td>4.88</td>
<td>0.77</td>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(90.25)</td>
<td>(95.35)</td>
<td>(101.51)</td>
<td>(108.99)</td>
<td>(118.05)</td>
</tr>
<tr>
<td>0.6</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(122.87)</td>
<td>(129.54)</td>
<td>(137.26)</td>
<td>(146.22)</td>
<td>(156.67)</td>
</tr>
<tr>
<td>0.8</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(166.13)</td>
<td>(174.89)</td>
<td>(184.80)</td>
<td>(196.05)</td>
<td>(208.86)</td>
</tr>
<tr>
<td>1.0</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(223.14)</td>
<td>(234.63)</td>
<td>(247.45)</td>
<td>(261.79)</td>
<td>(277.87)</td>
</tr>
</tbody>
</table>